Worst-case and ideal GMRES for a Jordan block ⋆
نویسندگان
چکیده
We investigate the convergence of GMRES for an n by n Jordan block J . For each k that divides n we derive the exact form of the kth ideal GMRES polynomial and prove the equality max ‖v‖=1 min p∈πk ‖p(J)v‖ = min p∈πk max ‖v‖=1 ‖p(J)v‖, where πk denotes the set of polynomials of degree at most k and with value one at the origin, and ‖ · ‖ denotes the Euclidean norm. In other words, we show that for a Jordan block worst-case GMRES and ideal GMRES in these steps are the same. Moreover, we derive lower and upper bounds on the norm of the kth ideal GMRES polynomial in these steps. For the Jordan block with eigenvalue one, we present an explicit formula for its singular value decomposition and use it to improve the bound on the ideal GMRES residual norm in the considered steps k.
منابع مشابه
On Worst-case Gmres, Ideal Gmres, and the Polynomial Numerical Hull of a Jordan Block
When solving a linear algebraic system Ax = b with GMRES, the relative residual norm at each step is bounded from above by the so-called ideal GMRES approximation. This worstcase bound is sharp (i.e. it is attainable by the relative GMRES residual norm) in case of a normal matrix A, but it need not characterize the worst-case GMRES behavior if A is nonnormal. Characterizing the tightness of thi...
متن کاملGmres Convergence and the Polynomial Numerical Hull for a Jordan Block
Consider a system of linear algebraic equations with a nonsingular n by n matrix A. When solving this system with GMRES, the relative residual norm at the step k is bounded from above by the so called ideal GMRES approximation. This bound is sharp (it is attainable by the relative GMRES residual norm) in case of a normal matrix A, but it need not characterize the worstcase GMRES behavior if A i...
متن کاملProperties of Worst-Case GMRES
In the convergence analysis of the GMRES method for a given matrix A, one quantity of interest is the largest possible residual norm that can be attained, at a given iteration step k, over all unit norm initial vectors. This quantity is called the worst-case GMRES residual norm for A and k. We show that the worst case behavior of GMRES for the matrices A and A is the same, and we analyze proper...
متن کاملConvergence analysis of the global FOM and GMRES methods for solving matrix equations $AXB=C$ with SPD coefficients
In this paper, we study convergence behavior of the global FOM (Gl-FOM) and global GMRES (Gl-GMRES) methods for solving the matrix equation $AXB=C$ where $A$ and $B$ are symmetric positive definite (SPD). We present some new theoretical results of these methods such as computable exact expressions and upper bounds for the norm of the error and residual. In particular, the obtained upper...
متن کاملConvergence of GMRES for Tridiagonal Toeplitz Matrices
Abstract. We analyze the residuals of GMRES [9], when the method is applied to tridiagonal Toeplitz matrices. We first derive formulas for the residuals as well as their norms when GMRES is applied to scaled Jordan blocks. This problem has been studied previously by Ipsen [5], Eiermann and Ernst [2], but we formulate and prove our results in a different way. We then extend the (lower) bidiagona...
متن کامل